

https://docs.google.com/file/d/1RRSVnj4DChfsZmAYkINVuUnQJaK4wOaV/preview

An
Future Design

SGX3 CODING | Lo ; . penguinmusi
INSTITUTE | ‘ <4 https://pixabay.com/music/future-bas

https://pixabay.com/music/future-bass-future-design-344320/
https://pixabay.com/music/future-bass-future-design-344320/

Project Overview
& Team Roles

Julian — GitHub & Documentation Lead +

Sets up repo, manages README.md, folder structure, and code
organization.

Ejay — Poster & Presentation Lead
Designs project poster and final slide deck; supports portal content &

layout. Will be working on Flask as well. :\

Zion — Paper Analyst

Selects target papers, evaluates reproducibility criteria, leads
scorecard writing.

Dave — Code Runner

Attempts to reproduce paper results, logs code, dataset, and *ox
hardware issues X X
Yari — Communications & Submission Manager _ V777

Coordinates daily check-ins, manages submission proof, team info,
and final review.

5 Day Plan

Dauys Focus Key Outputs
X
Monday Kickoff & Setup Repo setup, roles assigned, paper o
shortlist
Tuesday Paper Deep Dive & Planning Paper selected, access tested,
plan slides
Scorecard Development & Testing JSON/CSV file, initial portal
Wednesday layout, graph
Portal Build & Poster Finalization Site live, poster PDF, submission
— =+ Thursday proof

Final Presentation & Deliverables Slides PDF, final push to GitHub,
Friday Wrap-up rehearsal

HackStreet Boys:
Project Progress

Priorities:

Our current priority is creating the datasets
from the papers and a proper rubric.
We have decided to use a python script to
read the scores in so that we can use the data
to plot that information.
While also starting to build our
website/github to host our information and
the actual score cards that we are building.

TIIss

HackStreet Bouys

Project Plan
Update!

The project plan before is still in progress
but we have started to move somethings
to be done in tandem with other goals, like
the beginning to code our flask and
properly setting up the information held in
papers/websites. While also including

ore flexibility due to time zones and
some skill levels.

Technology/Problems

We have been using Al like manus,
chatgpt and gemini prompting it to
give us ideas for rubric and helping
debug our code. While also applying
our skills in virtual environments like
colab to test out our python code.

We created a python script that
scrapes a specified number papers,
feeds them into Gemini Al, which
then provides feedback on some
scoring metrics and stores them in a
csv file.

2. Iterate through each paper and get LLM evaluation

for i, paper in enumerate(papers_for_evaluation): H a C kS t rE E t E D s
= paper.get("Title”, "Untitled Paper”).replace('\n’, " '

paper_title =
print(f"\n--- Evaluating Paper {i+l}: "{paper_title}' ---")

prompt = generate llm prompt_ for_ paper(paper, RUBRIC)

We were able to create a

response = 11lm model.generate content(prompt)

evaluation_result text - response.text.strip() pyt h O n S Cri pt tO eva | u ate

print(evaluation_result text)

all raw_evaluations_text += f"\n--- Evaluation for Paper {i+l}: '{paper_title}' ---\n" pa perS a n d p ut th em into a

all raw_evaluations_text += evaluation_result_ text

all raw_evaluations_text += "\n" + "="*80 + "\n" d atafra m e tO be g ra p h ed . We

1"s text response directly into a dictionary

;ar;é;_scc;;esl = parse_1lm response to dict(evaluation result text, paper_title) a | S O h ave St a rted tO g et O u r

structured_evaluations list.append(parsed_scores)

flask app up and running

print(f"Error evaluating paper ‘{paper_title}’' with Gemini: {e}")

° °
error_message = f“LLM evaluation failed for this paper: {e}” I n Cl u d I n g O u r

all raw _evaluations_text += f"\n--- Evaluation for Paper {i+l1}: '{paper_title}' (FAILED) ---

all raw_evaluations_text += error_message

e e, T team/bac kg round
structured_evaluations list.append({“Paper Title": paper_title, "Evaluation Status": "Failed®
information

HackStreet Boys

Rubric:

This rubric assesses scientific presentations based on six key criteria, each
scored from 1 (Poor) to 4 (Excellent):

1. Accessibility
Evaluates whether the resource is open and free or requires
payment/login.

2. Computer Requirements
Measures how reasonable and clearly specified the
hardware/software needs are.

3. Reproducibility of Results
Assesses how easily others can reproduce the project using
provided steps and data.

4. README File
Looks at the presence and quality of documentation explaining the

project’s purpose, setup, and usage. Total Score: /24

5. GitHub Repository e Excellent: 21-24
Checks for an organized, public repo with code and version
control. e Good: 17-20
6. Coding Software Availability e Fair: 13-16
Rates how accessible and well-documented the required coding
tools are. e Needs Improvement: Below 13

AN

EVALUATION RUBRIC

CRITERIA EXCELLENT GOOD FAIR POOR
) (4 pts) (3 pts) (2 pts) (1pt)
Full ; Mostly specifed Mostly specified Requlres paid Not
1. ACCESSIBILITY Eo)éangnfgnngfS access or mini- | access or milltl access or accessible
mal barrier mal barrier difficult repr.

> COMPUTER
REQUIREMIENTS

Clearly specified
and reasonable
for most users

Some-specificat-
lons provided
(e.g.)

Some partially
specified

Steps unclcar or
data missing

Not specified
or linrealistic

purpose setup.
Ubsibh, tn disperitetviss

complete content

conplete content

3 REPRODUCIBILITY All steps and Steps unclear Steps unclear Not reproducible,| No README
" OF RESULTS data clearly or data missing or data missing | steps unclear repo
documented.
Clear detailed README missing No README No Github i
S ’ No Github
4. README FILE README explalmng unreadable. in- missing’ un- misnno 0[’8;0 d

5. GITHUB REPOSITORY

Public aithub
repa with arg-
anized code.
and with documented

#*Software/tools
used are free.
opem-cource, and

+Software/tools
used are free

or undocmented

Coding missno
available,und-
ocwmcvented

Coding tools
not available
or undocumen

6. CODING SOFTHARE
AVAILABILITY

| e ———————————— |
ACCESSIBILITY

COMPUTER
REQUIREMENTS

REPRODUCIBILITY
OF RESULTS

README FILE

GITHUB REPOSITORY

CODING SOFIWARE
AVAILABILITY

TOIAL POINTS: _____ / 24

Optional Scoring Guide:

Excellent: 21-24 Good: 17-20 Fair: 13 Needs Improvement below 13

EVALUATION RUBRIC

CRITERIA

Firlly open acces;
no payment or

Clearly specified
and reasonable

for most users

All steps and
data clearly
documented

Clear detailed

purpase setup.
L/sable no depeniersies,

Public github repo
mith organized
code, version

ard with documentation

TOIAL POINTS:

EXCELLENT
(4 pts)

Mostly specified
access or minir

mai barrier

Some specificati-

ons provided
(&9.)

Steps unclear
or data missing

o README missing
README explaining | unreadable, inco

mplete content

Software/tools

used are free,

open-source, and

/24

GOOD
(3 pts)

Mostly specified

access of micim
mal barrier

Some partially
specified

Steps unclear
or data missing

No README
missing, un-
mpetable content

-Soffware/touls
used are free

or undocumented

FAIR
(2 pts)

Reouires paid
access or
difficult repr:

Only portially
specified

Not repoducible;
steps unclear

Coding nissno
provided

Coding tools no

[

|
Not ‘
accessible ‘
[

Not specified
or unrealislic

No RAIDME |
repo

No Github ‘
repo \

Cooing tools

available, unclou | not araj lab
or undvcumented| e urdotumen

Optional Scoring Guide:

Excellent: 21-24 Good: 17-20 Fair: 13- Needs Improvement below 13‘

/7,

website Demo

HackStreet Boys - Day 4. Update

We selected a design template that best fit our
project goals and began editing our poster to
customize it with the necessary information of
our website, the data gleaned and visuals that
match our website.

ANALYSIS

Our analysis focused on extracting metadata from a

We also have been working on and completed
the SC24 paper scrapping and have updated our
code to read the pdf’s from those papers since
they were not directly on the SC24 website.

We have had some issues with using gemini’s
imited Al APl and integrating our flask app onto
the server

