

Team Goals and Project Plan

November 4, 2023

The University of Texas at Austin Center for Pandemic Decision Science

HTTPS://HACKHPC.GITHUB.IO/HPCINTHECITY23

Theme Song: <u>Welcome Back</u>

Xinyi Miao

Evans Etrue Howard

<u>Mentors</u>

- Emily Javan
- Oluwasegun Ibrahim
- Lydia Fletcher

Ahmad Samyono

Qimora Mason

Coreen Mullen

Project Plan

<u>Hackers</u>

Coreen

Qimora

Xinvi

Mentors

TEAM RENDER MAGES

EXAMINING THE RELATIONSHIP BETWEEN MOBILITY AND SOCIAL VULNERABILITY INDEX DURING A PANDEMIC

GIDEON OSEI BONSU JOSHUA HARRELL CLARENCE CONNER DANEISHA HARRIS SUSAN GARZA

JOSE HERRERA

EMMA BUKOWSKI

Theme Music: <u>Believer</u>

- ABORIAD BANG

Annual Strength Strength

enider Magges

Render Mages

Goals	 Explore the relationship between changes in mobility and social vulnerability score (SVI) in Austin, Texas Determine if this relationship is dependent on mobility restrictions
Project Plan	 Select the appropriate time period
	 Compare how mobility is different from selected dates to other times
	 Evaluate the relationship between SVI and Mobility
	 Verify the evaluations to show a general pattern
	 Review calculations to improve results
	 Visualize results

Tasks

JOSHUA HARRELL GitHub Operator

Susan Garza Poster Lead

GIDEON OSEI BONSU — Coding Lead —

Clarence Conner

DaNeisha Harris PowerPoint Designer

JOSE HERRERA Mentor

Emma Bukoswki Mentor

MASSY SITUATION: Mobility Data Analysis

Team name: Party Animals Mentor: Kelly Gaither Co-Mentor: Gladys Chen Hackers: Leah Monet Morgan, Yamonta Gaines, Michael Olubode, Lisa Phan, Alex Gutierrez

0

Theme_song: <u>WE ARE ONE</u>

Party Animals Goals and Plans

- Overall Party Goal: Enhance public safety and situational awareness by analyzing mobility data from Safegraph to identify and visualize mass gatherings that occurred from 2018 through February 2022.
 - > 1st Party Task:

Get a list of actual historical mass gathering events – date, location, and size

> 2nd Party Task:

Find 1st Party Task events in the mobility data

> 3rd Party Task:

Compare actual mass gathering events to representations in the mobility data.

> 4th Party Task:

Analyze the data to identify recurring patterns and trends in mass gatherings, such as the frequency, size, and locations of events, in order to gain better understanding of the dynamics involved.

> 5th Party Task:

Investigate the relationship between mass gatherings & superspreader events

Roles of the Party Animals

Primary personnel:

Visualization: Michael Olubode

Coding: Lisa Phan

Statistics: Yamonta Gaines & Alex Gutierrez

Github: Alex Gutierrez

Ground Truth Research: LeahMonet Morgan & Yamonta Gaines

Census Data Expert: Whole Group

Safegraph Data Expert: Whole Group

Shared Spaces:

- Documents/Presentations/Data
 - <u>Google Drive</u>
- Comms
 - Discord Channel #massysituation
- Source Code Repository
 - Github
 - Team Repo URL

+ Subtask 1: Looking at pattern of attendees leaving mass-gatherings (~ 0.5 day)

- + Subtask 2 : Map this pattern to covid spread from CDC (1 day)
- + Subtask 3: Choropleth map visualization (~0.5 day)

Party task 5:

Understanding the relationship between mass gatherings and super-spreader events during Covid-19

Team Name

Overall Project Goal:

- Sub goal 1 Estimated Time Needed
 - Lead person
- Sub goal 2 Estimated Time Needed
 - Lead person
- Sub goal 3 Estimated Time Needed
 - Lead person
-

Shared Spaces:

- Documents/Presentations/Data
 - (ex. Google Drive, Box)
 - URL to resource
- Comms
 - Discord Channel #Channel(s)name
- Source Code Repository
 - Github
 - Team Repo URL

Team Name

Overall Project Goal:

Team Roles:

- Mentors
 - Mentor Names
- Deliverables: Github Repo and custom README.md
 - Lead Name
- Deliverables: Presentation
 - Lead Name
- Deliverables: Poster
 - Lead Name
- Primary Coder
 - Lead Name
- Primary Data Manager/Wrangler
 - Lead Name
-

HPC in the City: Pandemics

QUESTIONS ??

Next Session:

- DAY 3 AFTERNOON CHECK-IN: Team Progress [Sunday, 11/5/23 @ 2:00pm CST]

**REMEMBER Time Change Tonight!

Schedule:

https://hackhpc.github.io/hpcinthecity23/schedule.html

The University of Texas at Austin Center for Pandemic Decision Science

