f&&@@

TEXAS ADVANCED COMPUTING CENTER

WWW.TACC.UTEXAS.EDU

&p

The University of Texas at Austin

«_ Build a Job Queue API with
Flask, Redis, and HotQueue

Putting it all together

PRESENTED BY:

B Today's Goal

Understand how job queues work
Submit jobs using a Flask route

Track job status with Redis

Run background jobs using HotQueue

TACC

What is a Job Queue?

A job queue allows you to:

e Submit a task (e.g., analyze traffic data)
e Letitrun /ater in the background

e Check its progress or result

“2 It separates task submission from task processing

™ Analogy: The Food Truck

1. You place an order (Flask /submit)
2. It goes into the order list (Redis Queue)
3. The cook (Worker) makes the food

4. You check if your food is ready (/status/<job_id>)

CEZIEwEY

TACC

Software Engineering, Basic Framework

Client
requests

QUEUE

181

Tool

Flask
Redis

HotQueue

Worker

uuid

Key Tools

Purpose

Web server & APl routes
In-memory key-value store

Queuing job IDs in Redis

Python script that processes jobs

Unique IDs for job tracking

™ Flask API - Submit Job

@app.route ("/submit", methods=["POST"])
def submit job () :
job 1id = str(uuid.uuid4())
job = {"id": job 1id, "status": "submitted", "input": request.json}
rdb.set (job_ 1d, str(job))
queue.put (Job 1id)
return jsonify({"job 1id": job 1id})

B Flask API - Get Job Status

Qapp.route ("/status/<job id>")
def check job(job 1id):
job = rdb.get (job 1d)
return jsonify(eval(job)) 1f job else ("Not found", 404)

TACC

2 Worker Script (HotQueue Worker)

@queue.worker
def work():
while True:
job_id = queue.get()
job = eval (rdb.get (job id))
job["status"] = "in-progress"

rdb.set (job_id, str(job))
Simulate a long job
result = {"message": f"Processed {job['input']l}"}

time.sleep(2)

job["status"] = "complete"

job ["result"] result

rdb.set (job_id, str(job))

B Testing with Python

import requests

Submit a job

job = requests.post ("http://localhost:5000/submit", Jjson={"date":
"2023-01-01"}) .Json ()

print ("Job ID:", job["job id"])

Poll for status

while True:
status = requests.get (f"http://localhost:5000/status/{job['job id']}") .json()

if status["status"] == "complete":

print ("Result:", status["result"])

break

10

Full Job Flow

User hits: 1) Worker.py does:
POST /submit (JSON payload sent to Flask)

Flask app does: e Listens to the HotQueue

e Pulls job_id from the queue
e Generates a unique job_id

e Loads job details from Redis using job_id
e Saves the full job (input + metadata) in Redis (db=0)

_ . o _ e Performs the analysis (e.g., filters Austin traffic data)
e Pushes just the job_id into a Redis-backed HotQueue (db=1)

e Updates job in Redis with status = complete + result

@ User hits:
GET /status/<job_id> to retrieve results

11

» So What Happens to the Route Logic?

Let’s say you had this Flask route from earlier in the week:

Qapp.route ("/incident count by date")

def count incidents():

date = request.args.get ("date")

result = traffic df[traffic df["date"] == date] .shapel0]

return jJsonify ({"count": result})

-

worker.py
@queue.worker
def process jobs():
while True:
job id = queue.get () .decode ("utf-8")

job = json.loads (rdb.get (job id))

job["status"] = "in-progress"

rdb.set (jJob_id, Json.dumps (job))

« So What Happens to the Route Logic?

3% This is where you move the analysis logic:
date = job["input"].get ("date")

count = traffic df[traffic df["date"] ==
date] .shape[0]

job["result"] = {"incident count": count}

job["status"] = "complete"

rdb.set (job_id, Jjson.dumps (job))

Suggestion!

Don't delete the route logic right away.
Instead:

1. Keep the route version active for direct API testing.
2. Move the same logic into a Python function (e.g., analyze_date(date)).

3. Call that function from both the route and the worker.

def analyze date(date):
return traffic_df[traffic_df["date"] == date].shape[0]
Then:

e In Flask:
return jsonify({"count": analyze_date(request.args.get("date"))})

r:
result'] = {"incident_count": analyze_date(job["input"]["date"])}

14

We need a some way of telling the worker
which method needs to run

the worker needs a way to know which method to run when a job comes in. That means:
The job submission should include:

® Ajob id (autogenerated)
® A task or operation field that tells the worker which method to run
® Any required input parameters (e.g., date, location, etc.)

' Recommended JSON Job Format

{
“operation”: "incident_count_by_date"”,
"params”: {
"date”: "2023-01-01"
}
}

Then the worker would look for operation, and dynamically call the correct function.

«Z Implementation Plan

1. Define Task Functions

analysis.py

def incident count by date(df, date):

return {"incident count": df[df["date"] == date].shape[0]}

def top locations(df, n=10):

return {"top locations": df["Location"].value counts () .head(n).to dict()}

def average response time (df) :

return {"avg response": df["ResponseTime"] .mean () }

“2 Implementation Plan

2. Modify Worker to Dispatch Tasks
worker.py
from analysis import *

TASK MAP = {

"incident count by date": incident count by date,
"top locations": top locations,
"average response time": average response time

@gueue.worker
def process jobs():
while True:
job _id = queue.get () .decode ("utf-8")

job = json.loads (rdb.get (job id))

job["status"] = "in-progress"

rdb.set (job id, Jjson.dumps (job))

op = Jjob["input"].get ("operation™)
params = job["input"].get ("params", {})
try:

result = TASK MAP[op] (traffic df, **params)
job["status"] = "complete"
job["result"] = result
except Exception as e:
job["status"] = "failed"

job["result"] = {"error": str(e)}

rdb.set (job_id, Json.dumps (job))

S SN

“Z Implementation Plan

3. Modify the /submit Route in Flask

@app.route ("/submit", methods=["POST"])
def submit job():
job id = str(uuid.uuid4())

data = request.get json()

job = {
"id": job id,
"status": "submitted",
"input": data,

"result": None

rdb.set (job_id, Jjson.dumps (job))

queue.put (job id)

return jsonify({"job id": job id, "status": "submitted"}), 202

Example Submission

Submit a top 5 location job
requests.post ("http://localhost:5000/submit", Jjson={
"operation": "top locations",

"params": {"n": 5}

20

Sample Code: Jobqueue, Flask Worker

analysis.py def unique issues (df):

return {"unique issues":

df ["Issue Report"].nunique () }
def incident count by date (df, date): -

count = df[df['date'] == date].shape[0]
def incidents by road(df, road):
return {"incident count": count}
filtered = df[df["Location"].str.contains (road,
case=False, na=False)]
def top locations(df, n=10): return {"count": filtered.shape[0]}
top =
df ['Location'] .value counts () .head(n).to dict()
return {"top locations": top}

def average response_ time (df):
if "ResponseTime" in df.columns:
avg = df ["ResponseTime"] .mean ()
return {"avg response": avg}

regurn {"error": "ResponseTime column missing"}

Sample Code: Submit Template

// submit templates.json "average response time": {
"operation": "average response time",
{ "params": {}
"incident count by date": { Yo
"operation": "incident count by date", "unique issues": {
"params": { "operation": "unique issues",
"date": "2023-01-01" "params": {}
} by
}, "incidents by road": ({
"top locations": { "operation": "incidents by road",
"operation": "top locations", "params": {
"params": { "road": "S CONGRESS"

"n": 5 }

b/ }

Sample Code: Worker Dispatch

worker.py

from hotqueue import HotQueue
import redis, Jjson, time

from analysis import *

import pandas as pd

Load the data once globally

traffic df = pd.read csv("data/atx traffic.csv")

rdb = redis.Redis (host="redis", port=6379, db=0)

queue = HotQueue ("job-queue", host="redis", port=6379,

db=1)

TASK MAP = {

"incident count by date": incident count by date,
"top locations": top locations,

"average response time": average response time,
"unique issues": unique issues,

Yincidents by road": incidents by road

@queue.worker
def process jobs():
while True:
job _id = queue.get () .decode ("utf-8")
job = json.loads (rdb.get (job id))
job["status"] = "in-progress"

rdb.set (job_id, Jjson.dumps(job))

op = Jjob["input"].get ("operation")
params = Jjob["input"].get ("params", {})
try:
result = TASK MAP[op] (traffic_df, **params)
job["status"] = "complete"
Jjob["result"] = result
except Exception as e:
Job["status"] = "failed"

job["result"] = {"error": str(e)}

rdb.set (job id, json.dumps (job))

Software Engineering, Basic Framework

Client
requests

QUEUE

181

ALREADY
KNOW YOU
THAT WHICH
YOU NEED.

25

