&p

The University of Texas at Austin

TACC.UTEXAS.EDU

f&&@@

* Intro to Redis & HotQueue:
Powering Background Jobs

PRESENTED BY:

Why Background Jobs?

e APIs can’t always process everything instantly
e Some tasks take time: data analysis, ML inference, PDF generation...

e Users don’t want to wait!

What is Redis?

In-memory key-value store

Fast, lightweight, used as:
| ' Cache

' Message broker

' Pub/sub system

Redis is often described as a "data structure server.” We'll use it as a
queue backend.

What is HotQueue?

. A simple Python wrapper around Redis
. Lets us queue jobs and process them with worker functions

. Great for teaching and lightweight use cases :)

from hotqueue 1mport HotQueue
g = HotQueue ("queue", host="localhost", port=6379)
g.put ("do something")

Queue Architecture

=

Client submits job (e.g. via API)

N

Flask app puts job in Redis queue

Worker polls Redis for jobs

w

.. Worker runs task and stores result

This model decouples job submission from execution. The user moves on while the job runs in the
background

TACC

Sample Queue Code

in app.py

g.put ({"type": "plot", "params": {"date":
"2024-00-01"1}1})

1in worker.py
for job 1n g.consume () :
1f jJob["type"] == "plot":

generate plot (job["params"])

Demo Flow

You’ll Build This Today
e /job/submit — accepts JSON and queues job

e Redis stores pending jobs
e \Worker processes jobs in background

e /job/result/<id> — gets result when ready

Common Use Cases in Data Apps

Heavy data processing (traffic analysis!)

Image/video manipulation

ML model inference

Scheduled jobs (e.g., run every hour)

Getting Started with Redis & HotQueue

S>docker pull redis
$>docker run -d --name redis-server -p 8020:6379 redis

S>docker ps

S>pip3 install hotgqueue redis

***NOTE :
red - this is *your* port on the server

blue - this i1is the port *inside* the container

Hit the Queue!

from hotqueue import HotQueue

import time

Connect to Redis and create a queue named 'job queue'

g = HotQueue ("job queue", host="localhost", port= XXXX)

def producer():
Put some sample jobs on the queue
for i in range(5):
job _data = {"type": "print", "msg": f"Hello {i}"}
print (f"Producer: Adding job {job data}")
g.put (job data)

time.sleep (1)

def consumer () :
print ("Consumer: Waiting for jobs...")
for job in g.consume () :
print (f"Consumer: Got job: {job}"™)
if job["type"] == "print":
print (f"Message: {job['msg']l}")
else:

print ("Unknown job type.")

10

H

if name ==

demo

it the Queue!

__main
import threading
Run producer and consumer in separate threads for

t producer = threading.Thread(target=producer)

t consumer = threading.Thread(target=consumer)

t consumer.start ()

t producer.start()

t producer.join()
Note: consumer runs infinitely waiting for jobs,

so we won't join it here to keep demo simple

11

